244 research outputs found

    Operationalizing the circular city model for naples' city-port: A hybrid development strategy

    Get PDF
    The city-port context involves a decisive reality for the economic development of territories and nations, capable of significantly influencing the conditions of well-being and quality of life, and of making the Circular City Model (CCM) operational, preserving and enhancing seas and marine resources in a sustainable way. This can be achieved through the construction of appropriate production and consumption models, with attention to relations with the urban and territorial system. This paper presents an adaptive decision-making process for Naples (Italy) commercial port's development strategies, aimed at re-establishing a sustainable city-port relationship and making Circular Economy (CE) principles operative. The approach has aimed at implementing a CCM by operationalizing European recommendations provided within both the Sustainable Development Goals (SDGs) framework-specifically focusing on goals 9, 11 and 12-and the Maritime Spatial Planning European Directive 2014/89, to face conflicts about the overlapping areas of the city-port through multidimensional evaluations' principles and tools. In this perspective, a four-step methodological framework has been structured applying a place-based approach with mixed evaluation methods, eliciting soft and hard knowledge domains, which have been expressed and assessed by a core set of Sustainability Indicators (SI), linked to SDGs. The contribution outcomes have been centred on the assessment of three design alternatives for the East Naples port and the development of a hybrid regeneration scenario consistent with CE and sustainability principles. The structured decision-making process has allowed us to test how an adaptive approach can expand the knowledge base underpinning policy design and decisions to achieve better outcomes and cultivate a broad civic and technical engagement, that can enhance the legitimacy and transparency of policies

    Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use

    Get PDF
    Abstract. Recent developments in land consumption assessment identify the need to implement integrated evaluation approaches, with particular attention to the development of multidimensional tools for guiding and managing sustainable land use. Land use policy decisions are implemented mostly through spatial planning and its related zoning. This involves trade-offs between many sectorial interests and conflicting challenges seeking win-win solutions. In order to identify a decision-making process for land use allocation, this paper proposes a methodological approach for developing a Dynamic Spatial Decision Support System (DSDSS), denominated Integrated Spatial Assessment (ISA), supported by Geographical Information Systems (GIS) combined with the Analytic Hierarchy Process (AHP). Through empirical investigation in an operative case study, an integrated evaluation approach implemented in a DSDSS helps produce "urbanization suitability maps" in which spatial analysis combined with multi-criteria evaluation methods proved to be useful for both facing the main issues relating to land consumption as well as minimizing environmental impacts of spatial planning

    Comparison of Fixed-Wing Unmanned Aircraft Systems (UAS) for Agriculture Monitoring

    Get PDF
    Florida citrus growers need inexpensive methods to observe citrus plants to detect disease and stress consistently. Health vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) collected from Unmanned Aircraft Systems (UAS), can be used to identify variation in plant health. Simple-to-operate UAS may enable growers to determine within-field variation more frequently than with inspections from scouts, providing more frequent knowledge about the crop condition. This research compared two low-cost fixed-wing UAS, a 5,000ParrotDiscoProAganda5,000 Parrot Disco Pro Ag and a 16,690 senseFly eBee, each equipped with a Parrot Sequoia multispectral camera, to determine if there were differences in the NDVI data results and ease of operation. There were no statistical differences between NDVI reflectance values obtained using the Disco Pro Ag (M = 0.62, SD = 0.15) and the eBee (M = 0.60, SD = 0.15), t(45) = -1.45; p = 0.15. There was a significant positive correlation between the datasets (Pearson correlation = 0.963, p = 0.00). These results suggest that both the Disco Pro Ag and eBee were equally capable of producing the same data from the Parrot Sequoia multispectral camera. Differences in mobility and methods of waypoint planning between these two low-cost UAS may provide remote pilots with different styles of operation. As growers continue to adopt UAS technology to understand their fields better, the characteristics of each system will be important for quick setup time and ease of use

    Il ruolo dell’Architettura nella gestione dei Commons: un’ipotesi per lo “Scugnizzo liberato”.

    Get PDF
    Nel 2013 il Comune di Napoli ha istituito l’Osservatorio sui beni comuni, con quest’atto viene ufficializzata una posizione innovativa, ma anche fortemente controversa, relativa alla gestione di beni di proprietà pubblica o privata da parte di “comunità” che utilizzano questi spazi realizzando un utile sociale. Il numero di Louts del 1994 dal titolo Commons traccia la relazione tra questa questione, di natura economica, politica e sociale e l’architettura. In particolare a Napoli i nove spazi individuati dall’Osservatorio pongono agli architetti nuove domande e, prima tra tutte, come conciliare questa modalità di gestione dal basso, che ha sicuramente il merito di restituire alla comunità luoghi spesso dimenticati e abbandonati, con le esigenze di tutela e conservazione del patrimonio culturale della città. Partendo dal caso dello” scugnizzo liberato” l'intervento proverà a definire un possibile ruolo dell’architettura nel processo di gestione dei Commons

    Manufacturing and Validation of a Novel Composite Component for Aircraft Main Landing Gear Bay

    Get PDF
    Composite materials may reduce the final weight of the aircraft structural components, in addition to improve fatigue performance and corrosion resistance. In order to achieve the optimization of air transport systems, making them increasingly sustainable, the structural design must be surely reviewed, starting to follow the ‘‘composite thinking’’ philosophy. The present research provides some relevant outcomes concerning the design of a composite sample for the main landing gear bay of a large commercial airplane (EASA CS25 category), within ITEMB (integrated full composite main landing gear bay concept) project, a program of Clean Sky 2 EU research framework. The most ambitious goal is to develop a new generation of lower center fuselage (LCF) with an innovative integrated landing system in the fuselage, which is considered the next frontier in the development of landing systems for medium-haul aircraft, such as the Airbus A320 aircraft family. The development of a different architecture, with the landing gear integrated within the related fuselage bay, could lead to a simplification of the whole subassembly with potential advantage in terms of construction and assembly times. Final target of the project is the manufacturing of an innovative monolithic composite structure that will replace the actual configuration (a mixed structure of metal and composite subassemblies) reducing or actually removing all the cost of assembly and increasing the production rate. This paper presents the main results of the work, introducing the main processing steps and prototype results; in the last part of the work, also some experimental tests on significant element are introduced as the first assessment of the technology readiness level that has been achieved

    Complex composite technology investigation: Simulations and experimental results

    Get PDF
    The paper deals with discussion of research activities within ITEMB (InTEgrated Full Composite Main landing gear Bay Concept) framework, an EU Clean Sky 2 program coordinated by Airbus. The driving motivation for the investigation on such a technology was found in the opportunity to design a main landing gear bay in a full composite configuration: Rational approaches have been implemented in an efficient testing stage providing the necessary database for the static qualification of the conceived design. Advanced and innovative solutions for a "more integrated" system were duly analysed and experimentally validated thus proving the overall device compliance with industrial standards and applicable airworthiness requirements

    Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTiO3\mathrm{SrTi}{\mathrm{O}}_{3} crystals and at the interface of the corresponding LaAlO3/SrTiO3\mathrm{LaAl}{\mathrm{O}}_{3}/\mathrm{SrTi}{\mathrm{O}}_{3} heterostructures

    Get PDF
    With infrared (IR) ellipsometry and dc resistance measurements, we investigated the photodoping at the (001) and (110) surfaces of SrTiO3 (STO) single crystals and at the corresponding interfaces of LaAlO3/SrTiO3 (LAO/STO) heterostructures. In the bare STO crystals, we find that the photogenerated charge carriers, which accumulate near the (001) surface, have a similar depth profile and sheet carrier concentration as the confined electrons that were previously observed in LAO/STO (001) heterostructures. A large fraction of these photogenerated charge carriers persist at low temperature at the STO (001) surface even after the ultraviolet light has been switched off again. These persistent charge carriers seem to originate from oxygen vacancies that are trapped at the structural domain boundaries, which develop below the so-called antiferrodistortive transition at T∗=105K. This is most evident from a corresponding photodoping study of the dc transport in STO (110) crystals for which the concentration of these domain boundaries can be modified by applying a weak uniaxial stress. The oxygen vacancies and their trapping by defects are also the source of the electrons that are confined to the interface of LAO/STO (110) heterostructures, which likely do not have a polar discontinuity as in LAO/STO (001). In the former, the trapping and clustering of the oxygen vacancies also has a strong influence on the anisotropy of the charge carrier mobility. We show that this anisotropy can be readily varied and even inverted by various means, such as a gentle thermal treatment, UV irradiation, or even a weak uniaxial stress. Our experiments suggest that extended defects, which develop over long time periods (of weeks to months), can strongly influence the response of the confined charge carriers at the LAO/STO (110) interface

    Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTiO3 crystals and at the interface of the corresponding LaAlO3/SrTiO3 heterostructures

    Get PDF
    2-DIMENSIONAL ELECTRON-GAS; STRONTIUM-TITANATE; PERSISTENT PHOTOCONDUCTIVITY; DOMAIN-STRUCTURE; MOBILITY; TEMPERATURE; TRANSITION; FILMS; GAMMA-AL2O3/SRTIO3; FERROELECTRICITYThe work at the University of Fribourg was supported by the Schweizerische Nationalfonds (SNF) through Grant No. 200020-153660. B.P.P.M. wishes to acknowledge support from the Marsden Fund of New Zealand. The work at MUNI was financially supported by the Ministry of education youth and sports of the Czech Republic, under the project CEITEC 2020 (LQ1601). M.S., F.S., and G.H. acknowledge the support by the Spanish Government through Project No. MAT2014-56063-C2-1-R, the Severo Ochoa Grant No. SEV-2015-0496, and the Generalitat de Catalunya (Project No. 2014SGR 734). J. Mannhart is acknowledged for providing the LAO/STO (001) sample and J. Foncuberta for scientific discussion.Peer reviewe

    A10 – Human Factors Considerations of UAS Procedures and Control Stations: Tasks PC-1 through PC-3 Pilot and Crew (PC) Subtask, Recommended Requirements and Operational Procedures

    Get PDF
    The Alliance for System Safety of UAS through Research Excellence (ASSURE) conducted research focused on minimum pilot procedures and operational practices used by unmanned aircraft systems (UAS) operators today for the purpose of developing recommendations. This research recommends four pilot and 46 operational minimum procedures to operate a civil single-engine, fixed-wing, single-pilot-configured UAS flying in beyond visual line-of-sight (BVLOS) conditions. These recommendations are anticipated to support potential future aircrew procedure requirements for UAS larger than 55 lbs. operating in the National Airspace System (NAS). These procedures were validated using representative Control Stations in simulated environments
    corecore